

CERTIFICATE OF ACCREDITATION

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC)

has been assessed and accredited in accordance with the standard

ISO/IEC 17025:2017

"General Requirements for the Competence of Testing & Calibration Laboratories"

for its facilities at

B 177/178, GIDC ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

in the field of

CALIBRATION

Certificate Number: CC-4423

Issue Date: 28/05/2025

Valid Until: 27/05/2029

This certificate remains valid for the Scope of Accreditation as specified in the annexure subject to continued satisfactory compliance to the above standard & the relevant requirements of NABL. (To see the scope of accreditation of thislaboratory, you may also visit NABL website www.nabl-india.org)

Name of Legal Entity: ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC)

Signed for and on behalf of NABL

Anita Rani **Director**

N. Venkateswaran **Chief Executive Officer**

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

1 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
		3.0	Permanent Facility		
1	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Apparent Power @ 40 Hz to 70 Hz (30 V to 320 V, 1 mA To 10 mA)	Using High Precision 3Phase Reference Standard, Source by Direct/Comparison Method.	0.003 VA to 9.6 VA	0.385 % to 0.009 %
2	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Active Power @ 40 Hz to 70 Hz (30 V to 320 V, 1 mA to 10 mA , PF:0.1 (lead/lag) to UPF)	Using High Precision 3Phase Reference Standard, Source by Direct/Comparison Method.	0.003 W to 9.6 W	0.385 % to 0.009 %
3	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Apparent Energy @ 40 Hz to 70 Hz (30 V to 320 V, 1 mA To 10 mA)	Using High Precision 3Phase Reference Standard by Direct/Comparison Method.	0.003 VAh to 9.6 VAh	0.385 % to 0.009 %
4	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Apparent Energy @ 40 Hz to 70 Hz {30 V to 320 V, 10 mA to 100 A , PF:0.1 to UPF (lead/lag)}	Using High Precision 3Phase Reference Standard by Direct/Comparison Method.	0.03 VAh to 96 kVAh	0.17 % to 0.006 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

2 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
5	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Reactive Energy @ 40 Hz to 70 Hz {30 V to 320 V, 10 mA To 100 A , PF:0.1 to UPF ((lead/lag) }	Using High Precision 3Phase Reference Standard, Source by Direct/Comparison Method.	0.03 VArh to 96 kVArh	0.17 % to 0.006 %
6	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Reactive Power @ 40 Hz to 70 Hz { 30 V to 320 V, 10 mA To 100 A , PF:0.1 (lead/lag) to UPF }	Using High Precision 3Phase Reference Standard , Source by Direct/Comparison Method.	0.03 VAr to 96 kVAr	0.019 % to 0.008 %
7	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Apparent Power @ 40 Hz to 70 Hz (10 V to 480 V, 10 mA to 100 A)	Using Reference Power/ Energy Comparator, source by Direct / Comparison Method.	0.01 W to 1.44 kW	0.018 % to 0.019 %
8	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Reactive power @ 40 Hz to 70 Hz, (30 V to 320 V, 1 mA to 10 mA)	Using High Precision 3 Phase Reference Standard, Source by Direct/Comparison Method.	0.003 VAr to 9.6 VAr	0.385 % to 0.009 %
9	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Active Power @ 40 Hz to 70 Hz {40 V to 320 V, >120 A to 3000 A, PF: 0.5 (Lag/ Lead) to UPF}	By Using 3 Phase Reference Source with Multiturn Current Coil & 3 Phase Power analyzer By Using Direct Method.	2400 W to 2880 kW	0.015 % to 0.473 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

3 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
10	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Apparent Power @ 40 Hz to 70 Hz(30 V to 320 V, 120 A to 3000 A)	Using 3 Phase Reference Standard with Multi turn Current Coil & 3 Phase Power analyzer by Direct Method	360 VA to 2880 kVA	0.015 % to 0.385 %
11	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Phase AC Active Energy @ 40 Hz to 70 Hz (30 V to 320 V, 10 mA to 100 A , PF: 0.1 (lead/lag) to UPF)	Using High Precision 3Phase Reference Standard, Source by Direct/Comparison Method.	0.03 Wh to 96 kWh	0.018 % to 0.0018 %
12	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Phase AC Active Power @ 40 Hz to 70 Hz {30 V to 320 V, 10 mA to 100 A , PF:0.1 (lead/lag) to UPF}	Using High Precision 3 Phase Reference Standard, Source by Direct/Comparison Method.	0.03 W to 96 kW	0.019 % to 0.008 %
13	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Phase AC Reactive Energy @ 40 Hz to 70 Hz (30 V to 320 V, 1 mA To 10 mA)	Using Reference Power/ Energy Comparator, Source by Direct / Comparison Method.	0.003 VArh to 9.6 VArh	0.385 % to 0.009 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

4 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
14	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 1 kHz to 5 kHz	Using Power Analyzer By Direct Method	1 A to 20 A	0.075 % to 0.058 %
15	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 1 kHz to 5 kHz	Using 8½ Digital Multimeter By Direct Method	100 μA to 100 mA	0.035 % to 0.035 %
16	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 1 kHz to 5 kHz	Using 8½ Self Cal DMM by Direct Method	30 μA to 100 μA	0.071 % to 0.049 %
17	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 40 Hz to 70 Hz	Using Reference Power/ Energy Comparator , Source by Direct / Comparison Method	1 mA to 120 A	0.038 % to 0.0013 %
18	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 40 Hz to 70 Hz	Using High Precision Source and 1&3 Phase Reference Standard by Comparison Method	10 mA to 100 A	0.015 % to 0.0015 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

5 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
19	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using Power Analyzer By Direct Method	1 A to 20 A	0.09 % to 0.25% %
20	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	1 A to 3 A	0.20 % to 0.23 %
21	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	100 μA to 100 mA	0.051 % to 0.056 %
22	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 8½ Self Cal DMM By Direct Method	100 mA to 1 A	0.035 % to 0.075 %
23	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	100 mA to 1 A	0.21 % to 0.21 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

6 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
24	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 8½ Self Cal DMM By Direct Method	30 μA to 100 μA	0.068 % to 0.053 %
25	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC High Voltage @ 50 Hz	Using H.V. Probe with DMM By Direct Method	1 kV to 10 kV	3.06 % to 3.09 %
26	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC High Voltage @ 50 Hz	Using H.V.Probe with DMM by Direct Method	10 kV to 20 kV	3.07 %
27	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC High Voltage @ 50 Hz	Using Precision Potential Transformer with Standard PT/ Automatic Instrument Transformer Test Set (AITTS) with 6½ DMM by Direct Method	1000 V to 33 kV	0.09 % to 0.49 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

7 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
28	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC RESISTANCE@ 1 kHz	Using Precision LCR meter, By Direct Method	1 ohm to 10 kohm	0.13 % to 0.11 %
29	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 40 Hz to 70 Hz	Using High Precision 3 Phase Reference Standard, Source by Direct/Comparison Method	10 V to 480 V	0.0013 % to 0.0006 %
30	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 40 Hz to 70 Hz	Using Power /Energy Comparator, source by Direct/indirect Method	30 V to 320 V	0.0006 % to 0.0014 %
31	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 6½ DMM, By Direct Method	1 mV to 1 V	0.42 % to 0.12 %
32	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 8½ Self-cal DMM, By Direct Method	1 mV to 100 mV	0.28 % to 0.011 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

8 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
33	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 6½ DMM, By Direct Method	1 V to 10 V	0.12 %
34	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	10 V to 100 V	0.12 % to 0.043 %
35	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 8½ Self-cal DMM, By Direct Method	100 mV to 100 V	0.011 % to 0.014 %
36	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 8½ Selfcal DMM, By Direct Method	100 V to 1000 V	0.012 % to 0.01 %
37	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	100 V to 750 V	0.047 % to 0.06 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No 9 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
38	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Active Energy (1 Phase & 3 Phase) @ 40 Hz to 70 Hz {40 V to 320 V, 120 A to 3000 A, PF: 0.5 to UPF (Lag/ Lead)}	Using 3 Phase Reference Standard with Multiturn Current Coil & 3 Phase Power analyser by Direct Method	2400 Wh to 2880 kWh	0.015 % to 0.380 %
39	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Active Energy (1Phase & 3Phase) @ 40 Hz to 70 Hz {30 V to 320 V , 1 mA to 10 mA, PF: 0.1 to UPF (Lag/ Lead)}	Using Reference Source & Power/ Energy Comparator, Source by Direct / Comparison Method	0.003 W to 9.6 W	0.385 % to 0.0018 %
40	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Apparent Energy (1 Phase & 3 Phase) @ 40 Hz to 70 Hz.(40 V to 320 V, 120 A to 3000 A)	Using 3 Phase Reference Standard with Multiturn Current Coil & 3 Phase Power analyzer By Direct Method.	2400 VAh to 2880 kVAh	0.015 % to 0.380 %
41	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	CAPACITANCE @ 1 kHz	Using Precision LCR meter, By Direct Method	1 nF to 1 mF	0.41 % to 0.70 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

10 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
42	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	HARMONICS TOTAL HARMONICS DISTORTION, DISTORTION FACTOR @ 0.05 mA to 24 A, 40 Hz to 70 Hz.	Using High Precesion Reference Power/ Energy Comparator, Source by Direct / Comparison Method	2 nd order to 40 th order	0.8 % to 0.8 %
43	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	HARMONICS TOTAL HARMONICS DISTORTION, DISTORTION FACTOR @ 10 V to 240 V, 40 Hz to 70 Hz, 0.5-UPF-0.8	Using Reference Power/ Energy Comparator, source by Direct / Comparison Method	2 nd Order to 40 th Order	0.47 %
44	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	INDUCTANCE @1 kHz	Using Precision LCR meter, By Direct Method	100 μH to 10 H	0.27 % to 0.11 %
45	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Power Factor @ 40 Hz to 70 Hz { 10 V to 480 V, 1 mA to 120 A}	Using High Precision Source & 1&3 Phase Reference Standard by Direct/Comparative Method	0.1 PF to 1 PF	0.007 PF to 0.006 PF

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

11 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
46	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Reactive Energy (1Phase & 3Phase) @ 40Hz - 70Hz.{ 40 V to 320 V, 120 A to 3000 A, PF: 0.5 (Lag/ Lead) to UPF}	Using 3 Phase Reference Standard with Multiturn Currnet Coil & 3 Phase Power analyzer by Direct Method.	2400 VArh to 2880 kVArh	0.015 % to 0.473 %
47	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Reactive Power (1Phase & 3Phase) @ 40 Hz to 70 Hz {40 V to 320 V, 120 A to 3000 A, PF: 0.5 (Lag/ Lead) to UPF}	Using 3 Phase Reference Standard with Multiturn Currnet Coil & 3 Phase Power analyzer by Using Direct Method.	2400 VAr to 2880 kVAr	0.015 % to 0.380 %
48	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	1P2W/ 3P3W / 3P4W Active Power @ 40 Hz to 70 Hz {24 V to 480 V, 10 mA to 100 A, PF: 0.01 to 1 PF Lag Lead }	Using Precision Power Calibration system (PPCS) by Direct Method:	0.0024 W to 144 kW	0.0017 % / PF
49	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	1P2W/ 3P3W / 3P4W AC Active Power @ 40 Hz to 70 Hz, {30 V to 320 V, 1 mA to 120 A, PF: 0.1 PF to UPF (lead/lag) }	Using High Precision 1&3 Phase Reference Standard by Direct / Comparative Method	0.003 W to 115.2 kW	0.385 % to 0.015 %
50	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	1P2W/ 3P3W / 3P4W AC Apparent Power @ 40 Hz to 70 Hz (30 V to 320 V, 1 mA to120 A)	Using Reference Power/ Energy Comparator, Source by Direct / Comparison Method	0.003 VA to 115.2 kVA	0.385 % to 0.015 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

12 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
51	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	1P2W/ 3P3W / 3P4W AC Reactive Energy @ 40 Hz to 70 Hz {30 V to 320 V, 1 mA To 120 A , PF:0.1 to UPF (lead/lag)}	Using high precision Power & Source by Standard by Direct Method / comparision method	0.003 VArh to 115.2 kVArh	0.385 % to 0.015 %
52	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	1P2W/ 3P3W / 3P4W Active Energy @ 40 Hz to 70 Hz {30 V to 320 V, 1 mA to 120 A, PF: 0.1 to UPF (Lag/ Lead)}	Using High Precision Source & 3 Phase Reference Standard by Direct/Comparison Method.	0.003 Wh to 115.2 kWh	0.385 % to 0.015 %
53	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	1P2W/ 3P3W / 3P4W Phase Reactive Power @ 40 Hz to 70 Hz {30 V to 320 V, 1 mA To 120 A , 0.1 PF to UPF (lead/lag)}	Using High Precision 3Phase Reference source by Direct/Comparison Method	0.003 VAr to 115.2 kVAr	0.385 % to 0.015 %
54	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Apparent Energy @ 40 Hz to 70 Hz {30 V to 320 V, 1 mA to 120 A , PF: 0.1 to UPF (Lead , Lag)}	Using Reference Power/ Energy source by Direct Method	0.004 W to 115.2 kW	0.385 % to 0.015 %
55	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Current @ 40 Hz to 70 Hz	Using High Precision Source and 1&3 Phase Reference Standard by Direct / Comparative Method	1 mA to 10 mA	0.039 % to 0.0015 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

13 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
56	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 40 Hz to 70 Hz	Using Precision Power Calibration System (PPCS) By Direct Method	10 mA to 100 A	0.0014 % to 0.0014 %
57	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz	Using Multi-function Calibrator with Current coil By Direct Method	20 A to 1000 A	1.6 % to 1 %
58	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	1 A to 20 A	0.39 % to 0.14 %
59	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	1 mA to 10 mA	0.14 % to 0.08 %
60	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	10 mA to 100 mA	0.08 %
61	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	30 μA to 1 mA	0.62 % to 0.14 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

14 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
62	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	100 mA to 1 A	0.08 %
63	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC High Current @ 50 Hz	Using Precision Current Transformer, with Automatic Instrument Transformer Test Set by Direct Method	5 A to 3200 A	0.7 %
64	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power - Single Phase @ 50 Hz (0.2 PF,120 V to 240 V, 0.1 A to 20 A, 0.2 PF)	Using Multi-function Calibrator, By Direct Method	2.4 W to 960 W	0.5 %
65	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power - Single Phase @ 50 Hz (0.5 PF, 120 V to 240 V, 0.1 A to 20 A)	Using Multi-function Calibrator by Direct Method	6 W to 2.4 kW	0.3 %
66	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power - Single Phase @ 50 Hz (UPF, 120 V to 240 V, 0.1 A to 20 A)	Using Multi-function Calibrator By Direct Method	12 W to 4.8 kW	0.10 % to 0.12 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

15 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
67	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power- Single Phase @ 50 Hz (0.8 PF, 120 V to 240 V, 0.1 A to 20 A)	Using Multi-function Calibrator, By Direct Method	9.6 W to 3.8 kW	0.20 %
68	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Resistance @ 1 kHz	Using Standard Resistors by Direct Method	1 kohm	0.0066 %
69	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC RESISTANCE @ 1 kHz	Using Standard Resistors By Direct Method	1 ohm	0.011 %
70	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC RESISTANCE @ 1 kHz	Using Standard Resistors By Direct Method	10 kohm	0.007 %
71	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC RESISTANCE @ 1 kHz	Using Standard Resistors By Direct Method	10 ohm	0.0065 %
72	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Resistance @ 1 kHz	Using Standard Resistors By Direct Method	100 ohm	0.0066 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

16 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
73	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 1 kHz to 100 kHz	Using Multi-function Calibrator By Direct Method	10 V to 300 V	0.10 V to 0.15 V
74	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Voltage @ 40 Hz to 70 Hz	Using Precision Power Calibration System (PPCS) By Direct Method	10 V to 480 V	0.0005 % to 0.0013 %
75	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	1 mV to 10 mV	0.71 % to 0.088 %
76	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator, By Direct Method	10 mV to 100 mV	0.088 % to 0.038 %
77	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator, By Direct Method	10 V to 100 V	0.029 % to 0.031 %
78	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator, By Direct Method	100 mV to 10 V	0.038 % to 0.029 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

17 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
79	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	100 V to 1000 V	0.031 % to 0.038 %
80	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Active Energy (1 Phase /3 phase) @ 40 Hz to 70 Hz (24 V to 480 V, 10 mA to 100 A, 0.01 PF to UPF)	Using Precision Power Calibration system by Direct Method	0.0024 Wh to 144 kWh	0.0018 %/ PF
81	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	APPARENT ENERGY: 1 Phase /3 phase @ 40 Hz to 70 Hz (24 V to 480 V, 10 mA to 100 A)	Using Precision Power Calibration system (PPCS) by Direct Method	0.0024 VAh to 144 kVAh	0.0017 % to 0.0017 %
82	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	1 μF	0.05 %
83	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor (Discrete Value) by Direct Method	1 nF	0.02 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

18 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
84	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using High Accuracy Decade Capacitance Subsititutor 1 pF to 1uFby Direct Method	1 nF to 1 μF	0.52 %
85	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	10 μF	0.07 %
86	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor (Discrete Value) by Direct Method	10 nF	0.02 %
87	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	100 μF	0.27 %
88	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	100 nF	0.02 %
89	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	1000 μF	0.72 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No 19 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
90	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Phase Angle (40 Hz to 70 Hz, 24 V to 480 V, 0.04 A to100 A)	Using Precision Power Calibration System by Direct Method	(-) 180° to 180°	0.0011°
91	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Power Factor (40 Hz to 70 Hz, 24 V to 480 V, 0.04 A to 100 A)	Using Precision Power Calibration System by Direct Method	0.01 PF to 1 PF	0.00009 PF
92	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Reactive Energy 1 Phase /3 phase @ 40 Hz to 70 Hz (24 V to 480 V, 10 mA to 100 A, 0.01 PF to UPF)	Using Precision Power Calibration system (PPCS) by Direct Method	0.0024 VArh to 144 kVArh	0.0017 % / PF
93	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	Reactive Power - 1 Phase / 3 Phase @ 40 Hz to 70 Hz (24 V to 480 V, 10 mA to 100 A, 0.01 PF to UPF)	Using Precision Power Calibration system (PPCS) by Direct Method	0.0024 kVA to 144 kVAr	0.0017 % / PF
94	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 8½ DMM By Direct Method	1 μA to 100 μA	0.20 % to 0.01 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

20 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
95	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using Power Analyzer By Direct Method	1 A to 20 A	0.057 % to 0.25 %
96	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 6½ DMM By Direct Method	1 A to 3 A	0.12 % to 0.16 %
97	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 6½ DMM By Direct Method	1 mA to 10 mA	0.50 % to 0.07 %
98	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 8½ DMM By Direct Method	1 mA to 100 mA	0.01 % to 0.012 %
99	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 6½ DMM By Direct Method	10 mA to 100 mA	0.06 % to 0.12 %
100	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 8½ DMM By Direct Method	100 μA to 1 mA	0.01 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

21 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
101	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 8½ DMM By Direct Method	100 mA to 1 A	0.012 % to 0.020 %
102	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 6½ DMM By Direct Method	100 mA to 1 A	0.12 %
103	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using High Resistance Meter By Direct Method	1 Gohm to 10 Gohm	0.48 % to 1.1 %
104	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 6½ DMM By Direct Method	1 kohm to 10 kohm	0.014 %
105	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 6½ DMM By Direct Method	1 Mohm to 10 Mohm	0.022 % to 0.075 %
106	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	1 Mohm to 10 Mohm	0.126 % to 0.015 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

22 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
107	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 6½ DMM By Direct Method	1 ohm to 100 ohm	1.27 % to 0.023 %
108	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using High Resistance Meter By Direct Method	10 Gohm to 1 Tohm	1.1 % to 4.28 %
109	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	10 kohm to 1 Mohm	0.0017 % to 0.126 %
110	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	10 kohm to 100 kohm	0.011 %
111	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	10 Mohm to 100 Mohm	0.015 % to 0.10 %
112	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	10 Mohm to 100 Mohm	0.075 % to 0.18 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

23 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
113	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	100 kohm to 1 Mohm	0.012 % to 0.126 %
114	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	100 Mohm to 1000 Mohm	0.10 % to 0.25 %
115	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	100 ohm to 1 kohm	0.020 % to 0.011 %
116	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	100 ohm to 10 kohm	0.0017 %
117	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 8½ DMM By Direct Method	1 mV to 100 mV	0.032 % to 0.031 %
118	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	1 mV to 100 mV	1.25 % to 0.02 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

24 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
119	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	1 V to 10 V	0.006 % to 0.005 %
120	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 8½ DMM, By Direct Method	10 V to 100 V	0.001 % to 0.0012 %
121	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	10 V to 100 V	0.005 % to 0.006 %
122	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	100 mV to 1 V	0.02 % to 0.006 %
123	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 8½ DMM By Direct Method	100 mV to 10 V	0.001 %
124	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 8½ DMM By Direct Method	100 V to 1000 V	0.0012 % to 0.0013 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

25 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
125	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	100 V to 1000 V	0.006 %
126	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	1 μA to 10 μA	2.33 % to 0.25 %
127	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	1 A to 10 A	0.076 %
128	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	1 mA to 100 mA	0.018 % to 0.015 %
129	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	10 μA to 100 μA	0.25 % to 0.041 %
130	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	10 A to 20 A	0.12 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

26 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
131	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	100 μA to 1 mA	0.041 % to 0.018 %
132	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	100 mA to 1 A	0.015 % to 0.076 %
133	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator with Current Coil By Direct Method	20 A to 1000 A	0.47 %
134	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	0.01 ohm	0.084 %
135	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	0.01 ohm to 100 kohm	1 % to 0.012 %
136	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistor By Direct Method	0.1 ohm	0.035 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

27 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
137	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	0.1 ohm to 10 ohm	2.32 % to 0.045 %
138	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	1 Gohm	1.64 %
139	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	1 kohm	0.0007 %
140	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	1 kohm to 10 kohm	0.012 % to 0.013 %
141	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	1 kohm to 100 kohm	0.005 % to 0.008 %
142	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	1 Mohm to 10 Mohm	0.0044 % to 0.016 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

28 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
143	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistor By Direct Method	1 ohm	0.0007 %
144	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	1 ohm	0.055 %
145	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	1 ohm to 100 ohm	0.15 % to 0.005 %
146	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	1 Tohm	5.39 %
147	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	10 Gohm	1.64 %
148	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	10 kohm	0.005 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

29 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
149	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	10 kohm to 100 kohm	0.013 % to 0.012 %
150	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	10 Mohm to 100 Mohm	0.016 % to 0.07 %
151	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistor By Direct Method	10 ohm	0.0007 %
152	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	10 ohm to 100 ohm	0.045 % to 0.014 %
153	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	100 Gohm	3.47 %
154	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	100 kohm to 1 Mohm	0.008 % to 0.0044 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

30 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
155	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	100 kohm to 1 Mohm	0.013 % to 0.058 %
156	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	100 Mohm	1.17 %
157	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	100 Mohm to 1000 Mohm	0.07 % to 1.74 %
158	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	100 ohm	0.0009 %
159	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	100 ohm to 1 kohm	0.005 %
160	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	100 ohm to 1 kohm	0.014 % to 0.012 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

31 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
161	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Standard Resistor By Direct Method	25 ohm	0.0007 %
162	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	1 mV to 10 mV	0.17 % to 0.028 %
163	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	1 V to 10 V	0.0017 % to 0.0018 %
164	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Nano Scan Volt Maintenance System by Direct Method	1.018 V	0.00032 %
165	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	10 mV to 100 mV	0.028 % to 0.0043 %
166	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Nano Scan Volt Maintenance System by Direct Method	10 V	0.000367 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

32 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
167	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	10 V to 100 V	0.0018 % to 0.0036 %
168	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	100 mV to 1 V	0.0043 % to 0.0017 %
169	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator, By Direct Method	100 V to 1000 V	0.0025 %
170	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	1H 140 P	0.041 %
171	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	1 mH	0.12 %
172	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	10 H	1.14 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

33 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
173	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	10 mH	0.037 %
174	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	100 mH	0.036 %
175	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1kHz	Using Standard Inductor, by Direct Method	100 μΗ	0.31 %
176	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Current Transformer (Primary Injection) Phase Angle Error 5 A To 3200 A (Primary) 1 A & 5 A (Secondary)	Using Precision Current Transformer & Automatic Instrument transformer test set (AIITS) by Comparison Method	5 A to 3200 A	2.30 minute
177	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Current Transformer (Primary Injection) Ratio Error 5 A to 3200 A (Primary) 1 A & 5 A (Secondary)	Using Precision Current Transformer & Automatic Instrument transformer test set (AIITS), by Comparison Method	5 A to 3200 A	0.066 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

34 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
178	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope - Bandwidth	Using Multi-function Calibrator By Direct Method	50 kHz to 1100 MHz	4.63 %
179	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope Amplitude/ Voltage (DC Signal)	Using Multi-function Calibrator by Direct Method	1.25 mV to 100 V (1 Mohm)	0.5 % to 0.06 %
180	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope Amplitude/ Voltage (Square Wave Signal)	Using Multi-function Calibrator by Direct Method	1 mV to 100 V	0.29 % to 0.10 %
181	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope Amplitude/ Voltage(Square Wave Signal) (50 ohm)	Using Multi-function Calibrator by Direct Method	1 mV to 6.6 V	0.29 %
182	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope: Time Base	Using Multi-function Calibrator, By Direct Method	2 ns to 5 s	0.025 % to 0.50 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

35 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
183	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Potential Transformer - Phase Angle Error	Using Electronic Potential Divider 33kV & Standard Capacitor with Automatic Instrument transformer test set - by Comparison Method	6.6/v3 kV to 33 kV (Primary), 110/v3V to 110V (Secondary)	3 Minute
184	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Potential Transformer - Ratio Error	Using Electronic Potential Divider 33 kV & Standard Capacitor with Automatic Instrument transformer test set by Comparison Method	6.6/v3 kV to 33 kV (Primary); 110V/v3 to 110V (Secondary)	0.075 %
185	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	B-Type Thermocouple	Using Multi-function calibrator By Direct method	600 °C to 1800 °C	1.8 °C
186	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	E-Type Thermocouple	Using Multi-function calibrator By Direct method	(-) 250 °C to 1000 °C	1.3 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

36 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
187	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	J-Type thernocouple	Using Multi-function calibrator By Direct method	(-) 210 °C to 1200 °C	0.6 °C
188	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	K-Type Thermocouple	Using Multi-function Calibrator By Direct Method	(-) 200 °C to 1370 °C	1.3 °C
189	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	N-Type Thermocouple	Using Multi-function calibrator By Direct method	(-) 200 °C to 1300 °C	1.8 °C
190	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	R-Type Thermocouple	Using Multi-function calibrator By Direct method	100 °C to 1760 °C	1.3 °C
191	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	RTD (PT 385 / PT 100)	Using 8½ DMM, By Direct Method	(-) 200 °C to 800 °C	0.4 °C
192	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	S-Type Thermocouple	Using Multi - function Calibrator By Direct Method	100 °C to 1750 °C	1.3 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

37 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
193	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	T-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	(-) 200 °C to 400 °C	1.9 °C
194	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	B-Type Thermocouple	Using Multi-function Calibrator by Direct Method	600 °C to 1800 °C	0.8 °C
195	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	E-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	(-) 250 °C to 1000 °C	0.6 °C
196	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	J-Type Thermocouple	Using Multi-function Calibrator By Direct Method	(-) 200 °C to 1200 °C	0.4 °C
197	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	K-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	(-) 200 °C to 1350 °C	0.5 °C
198	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	N-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	(-) 200 °C to 1300 °C	0.6 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

38 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
199	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	R-Type Thermocouple	Using Multi-function Calibrator by Direct Method	100 °C to 1767 °C	0.8 °C
200	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT 385 / PT 100)	Using Multi-function Calibrator By Direct Method	(-) 200 °C to 800 °C	0.2 °C
201	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	S-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	100 °C to 1760 °C	0.7 °C
202	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using Multi-function Calibrator by Direct Method	1 Hz to 2 MHz	0.0013 %
203	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using Rubidium Frequency Standard By Direct Method	1 MHz	0.000001 %
204	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using Rubidium Frequency Standard by Direct Method	10 MHz	0.00000008 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

39 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
205	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using High Precision Source & 1&3 Phase Reference Standard COM by Comparison Method	40 Hz to 70 Hz	0.006 Hz
206	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using Rubidium Frequency Standard By Direct Method	5 MHz	0.00000015 %
207	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time	Using High Resolution counter By comparison Method	5 s to 24 hr	0.02 s to 0.25 s
208	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Function Generator by Direct Method	1 Hz to 15 MHz	0.0013 % to 0.0023 %
209	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using High Resolution Frequency Counter By Direct Method	1 Hz to 2.7 GHz	0.000036 % to 0.000003 %
210	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using 6 1/2 DMM by Direct Method	1 Hz to 300 kHz	0.02 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

40 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
211	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Synthesized By Direct Method	100 kHz to 6 GHz	0.00017 %
212	MECHANICAL- ACCELERATION AND SPEED	Tachometer (Contact Type)	Using rpm source and Digital Tachometer by Comparison method	100 rpm to 4500 rpm	7.23 rpm
213	MECHANICAL- ACCELERATION AND SPEED	Tachometer (Non- Contact Type)	Using rpm source and Digital Tachometer by Comparison method	100 rpm to 10000 rpm	7.32 rpm
214	MECHANICAL- ACCELERATION AND SPEED	Tachometer Calibrator (Contact Type	Using Digital Tachometer by Comparison method	> 4500 rpm to 10000 rpm	7.32 rpm
215	MECHANICAL- ACCELERATION AND SPEED	Tachometer Calibrator (Contact Type)	Using Digital Tachometer by Comparison method	100 rpm to 4500 rpm	7.23 rpm
216	MECHANICAL- ACOUSTICS	Sound Level Meter	Using Sound Level Calibrator by Direct Comparison method	94 dB & 114 dB @ 1kHz	0.66 dB
217	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Bevel Protractor L.C.: 5 min	Using Angle Gauge Block Set by Comparison method	0° to 360°	4 min. of Arc

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

41 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
218	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Calipers (Vernier / Dial / Digital/Groove) L.C.: 10 µm	Gauge Block Set & Caliper Checker, By Comparison method	0 to 200 mm	17 μm
219	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Calipers (Vernier / Dial / Digital/Groove) L.C.: 20 μm	Using Gauge Block Set & Caliper Checker by Comparison method	0 to 600 mm	28 μm
220	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Combination Set L.C.: 1°	Using Angle Gauge Block Set by Comparison method	0 ° to 180 °	35 min of Arc
221	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External Micrometer L.C.: 1 µm	Gauge Block Set, By Comparison method	>150 mm to 300 mm	5.7 μm
222	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External Micrometer L.C.: 1 µm	Gauge Block Set, By Comparison method	>25 mm to 150 mm	3.7 μm

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

42 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
223	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External Micrometer L.C.: 1 µm	Gauge Block Set, By Comparison method	0 to 25 mm	3.1 mm
224	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External Micrometer L.C.: 10 μm	Gauge Block Set, By Comparison method	>150 mm to 300 mm	11 μm
225	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External Micrometer L.C.: 10 μm	Using Gauge Block Set by Comparison method	25 mm to 150 mm	7 μm
226	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	External Micrometer L.C.: 10 μm	Using Gauge Block Set By Comparison method	Up to 25 mm	6 μm
227	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Feeler Gauge/ Thickness Gauge	Using ULM by Comparison Method	0.03 mm to 1 mm	1.2 μm

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

43 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
228	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Height Gauge (Analog / Dial / Digital) L.C.: 20 µm	Gauge Block Set & Caliper Checker, By Comparison method	0 to 600 mm	25 μm
229	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Internal Micrometer L.C.: 1 µm	Using Gauge Blocks Grade '0' & Gauge Block Accessories Set by Comparison Method	5 mm to 50 mm	3.7 μm
230	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Internal Micrometer L.C.: 10 μm	Using Gauge Blocks Grade '0' & Gauge Block Accessories Set by Comparison Method	50 mm to 300 mm	9 μm
231	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Lever Type Dial Gauge L.C.: 2 μm	Using ULM by Comparison method	Up to 1 mm	2.0 μm
232	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Micrometer Head/ Depth Micrometer L.C.: 1 μm	Using ULM by Comparison method	Up to 25 mm	2.6 μm

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

44 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
233	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Micrometer Head/ Depth Micrometer L.C.: 10 μm	Using ULM by Comparison method	Up to 25 mm	6 μm
234	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Micrometer Setting Rods	Using Gauge Block Set & ULM by Comparison method	>100 mm to 200 mm	2.5 μm
235	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Micrometer Setting Rods	Using Gauge Block Set & ULM by Comparison method	>200 mm to 300 mm	3.1 μm
236	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Micrometer Setting Rods	Using Gauge Block Set & ULM by Comparison method	>300 mm to 400 mm	4.2 μm
237	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Micrometer Setting Rods	Using Gauge Block Set & ULM by Comparison method	>400 mm to 500 mm	5.3 μm

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

45 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
238	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Micrometer Setting Rods	Using Gauge Block Set & ULM by Comparison method	25 mm to 100 mm	1.9 μm
239	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plain Plug Gauge	Using Gauge Block Set & ULM by Comparison method	1 mm to 100 mm	2.2 μm
240	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plain Ring Gauge	Using Ring Gauge & ULM by Comparison method	15 mm to 100 mm	2.2 μm
241	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plain Ring Gauge	Using Stylus Tip & ULM by Comparison method	3 mm to 15 mm	1.5 μm
242	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plunger Type Dial Gauge L.C.: 1 μm	Using Gauge Block Set & ULM by Comparison method	0.001 mm to 25 mm	2.2 μm

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

46 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
243	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Plunger Type Dial Gauge L.C.: 10 µm	Using Gauge Block Set & ULM by Comparison method	0.01 mm to 30 mm	7.5 μm
244	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Thread Measuring Wire/ Sphere	Using Universal Length Measuring Machine by Comparison method	0.17 mm to 6.35 mm	1.1 μm
245	MECHANICAL- DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)	Ultrasonic Thickness Gauge L.C.: 10 µm	Using Thickness Master by Comparison method	0.3 mm to 95 mm	375 μm
246	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Long Slip Gauge	Using Gauge Block Set & ULM by Comparison method	>300 mm to 400 mm	3.5 μm
247	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Long Slip Gauge	Using Gauge Block Set & ULM by Comparison method	>400 mm to 500 mm	4.2 μm
248	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Long Slip Gauge (Grade 2)	Using Gauge Block Set & ULM by Comparison method	>200 mm to 300 mm	2.9 μm

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

47 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
249	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Long Slip Gauge (Grade 2)	Using Gauge Block Set & ULM by Comparison method	100 mm to 200 mm	2.3 μm
250	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Universal Length Measuring Machine (L.C.: 0.01 µm)	Using Gauge Block Set by Comparison method	>10 mm to 50 mm	0.90 μm
251	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Universal Length Measuring Machine (L.C.: 0.01 µm)	Using Gauge Block Set by Comparison method	>50 mm to 100 mm	1.48 μm
252	MECHANICAL- DIMENSION (PRECISION INSTRUMENTS)	Universal Length Measuring Machine (L.C.: 0.01 µm)	Using Gauge Block Set by Comparison method	0.01 mm to 10 mm	0.50 μm
253	MECHANICAL- PRESSURE INDICATING DEVICES	PRESSURE (HYDRAULIC) Digital/Analogue Pressure Gauge , Digital Pressure Calibrator, Pressure Transmitter with indicator, Pressure Recorder	Using Hydraulic Dead Weight Tester by Comparison method as per DKD- R 6-1:2016	3 bar (g) to 34.7 bar (g)	(0.0035 bar + 0.0163 % rdg) bar

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

48 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
254	MECHANICAL- PRESSURE INDICATING DEVICES	PRESSURE (HYDRAULIC) Digital/Analogue Pressure Gauge, Digital Pressure Calibrator, Pressure Transmitter with indicator, Pressure Recorder	Using Hydraulic Dead Weight Tester by Comparison method as per DKD- R 6-1:2016	13.8 bar (g) to 700 bar (g)	(0.035 bar + 0.016 % rdg) bar
255	MECHANICAL- PRESSURE INDICATING DEVICES	PRESSURE (HYDRAULIC) Pressure Gauge, Pressure Transmitter with display, Pressure Recorder, Pressure Calibrator	Using Digital Pressure Calibrator by Comparison method as per DKD- R 6-1:2016	34.47 bar (g) to 344.7 bar (g)	0.35 bar
256	MECHANICAL- PRESSURE INDICATING DEVICES	PRESSURE (PNEUMATIC) Abs Pressure Gauge, Abs Pressure Calibrator, Barometer	Using Digital Pressure Calibrator by Comparison method	800 mbar (abs) to 1100 mbar (abs)	2.3 mbar
257	MECHANICAL- PRESSURE INDICATING DEVICES	PRESSURE (PNEUMATIC) Digital/Analogue Pressure Gauge , Digital Pressure Calibrator, Pressure Transmitter with display, Pressure Recorder	Using Pneumatic Dead Weight Tester by Comparison method as per DKD- R 6-1:2016	0.07 bar (g) to 2.1 bar (g)	(2.7E-04 bar + 0.023 %rdg) bar

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

49 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
258	MECHANICAL- PRESSURE INDICATING DEVICES	PRESSURE (PNEUMATIC) Vacuum Gauge, Vacuum Calibrator, Pressure Transmitter with display, Pressure Recorders	Using Pneumatic Dead Weight Tester by Comparison method as per DKD- R 6-2:2018	(-) 0.89 bar (g) to (-) 0.07 bar (g)	(15E-05 bar + 0.02 % rdg) bar
259	MECHANICAL- VOLUME	Conical Flask, Measuring Cylinder, Beaker, Volumetric Flask	Using Precision Balance (Range: Upto 200 g, L.C: 0.0001 g) and Distilled water by Gravimetric method as per ISO 4787:2021	1 ml to 10 ml @ 27 °C	0.05 ml
260	MECHANICAL- VOLUME	Conical Flask, Measuring Cylinder, Beaker, Volumetric Flask	Using Precision Balance (Range upto 200 g, L.C: 0.0001 g) and Distilled water by Gravimetric method as per ISO 4787:2021	10 ml to 100 ml @ 27 °C	0.5 ml
261	MECHANICAL- VOLUME	Pipette (Piston Type)	Using Precision Balance (Range: upto 200 g, L.C: 0.0001 g) and Distilled water by Gravimetric method as per IS 8655-6:2022	>1 ml to 10 ml @ 27 °C	15 μΙ

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

50 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
262	MECHANICAL- VOLUME	Pipette (Piston Type)	Using Precision Balance (Range: upto 200 g, L.C.: 0.0001 g) and Distilled water by Gravimetric method as per IS 8655-6:2022	>500 μl to 1000 μl @ 27°C	5 μΙ
263	MECHANICAL- VOLUME	Pipette (Piston Type)	Using Precision Balance (Range: upto 50 g, L.C: 0.00001 g) and Distilled water by Gravimetric method as per IS 8655-6:2022	50 μl to 200 μl @ 27 °C	3.15 μΙ
264	MECHANICAL- VOLUME	Pipette (Piston Type)	Using Precision Balance (range: upto 200 g, L.C: 0.0001 g) and Distilled water by Gravimetric method as per IS 8655-6:2022	500 μl @ 27°C	3.5 μΙ
265	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance Calibration of Class-I weighing balances and coarser (Readability: 0.1 mg)	Using Standard weights of E2 Class as per OIML R-76	>50 g to 200 g	0.3 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

51 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
266	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance, Class III weighing balances and coarser (readability: 100 g)	Using Standard weights of M1 Class as per OIML R-76	>500 kg to 1000 kg	300 g
267	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance, Class-II weighing balances and coarser, readability: 10 mg	Using Standard weights of E2 Class as per OIML R-76	>200 g to 2 kg	30 mg
268	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance- Class IIII weighing balances (readability: 10 g)	Using Standard weights of M1 Class as per OIML R-76	>50 kg to 200 kg	30 g
269	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance- Class IIII weighing balances, readability: 250 g	Using Standard weights of M1 Class as per OIML R-76	>2000 kg to 2500 kg	750 g
270	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance- Class-I weighing balances and coarser, readability: 0.01 mg	Using Standard weights of E2 Class as per OIML R-76	1 mg to 50 g	0.06 mg
271	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance-Class IIII weighing balances, readability: 50 g	Using Standard weights of M1 Class as per OIML R-76	>200 kg to 500 kg	150 g

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

52 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
272	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance-Class IIII weighing balances,readability: 200 g	Using Standard weights of M1 Class as per OIML R-76	>1000 kg to 2000 kg	600 g
273	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance-Class-III weighing balances and coarser readability: 1 g	Using Standard weights of E2 Class as per OIML R-76	>20 kg to 50 kg	3 g
274	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance-Class-III weighing balances and coarser, readability: 100 mg	Using Standard weights of E2 Class as per OIML R-76	>2 kg to 20 kg	300 mg
275	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	1 g	0.1 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

53 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
276	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	1 mg	0.02 mg
277	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	10 g	0.16 mg
278	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	10 mg	0.03 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

54 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
279	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balance (Range: upto 200 g, Readability: 0.0001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	100 g	0.25 mg
280	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	100 mg	0.05 mg
281	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	2 g	0.12 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

55 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
282	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	2 mg	0.02 mg
283	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	20 g	0.18 mg
284	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	20 mg	0.03 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

56 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
285	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balance (Range: upto 200 g, Readability: 0.0001 g:) by substitution method (ABBA" weighing cycle) as per OIML R-111	200 g	0.3 mg
286	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	200 mg	0.06 mg
287	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	5 g	0.14 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

57 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
288	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	5 mg	0.02 mg
289	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	50 g	0.2 mg
290	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	50 mg	0.04 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

58 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
291	MECHANICAL- WEIGHTS	Accuracy class F2 & coarser	Using Standard weights of E2 Class & Precision Balances (Range: Upto 50 g, Readability: 0.00001 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	500 mg	0.08 mg
292	MECHANICAL- WEIGHTS	Accuracy class M1 & coarser	Using Standard weights of E2 Class & Precision Balance (Range: upto 2000 g, Readability: 0.01 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	1 kg	15 mg
293	MECHANICAL- WEIGHTS	Accuracy class M1 & coarser	Using Standard weights of E2 Class & Precision Balance (Range: upto 20 kg, Readability: 0.0001 kg:) by substitution method (ABBA" weighing cycle) as per OIML R-111	10 kg	150 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

59 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
294	MECHANICAL- WEIGHTS	Accuracy class M1 & coarser	Using Standard weights of E2 Class & Precision Balance (Range: upto 2000 g, Readability: 0.01 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	2 kg	30 mg
295	MECHANICAL- WEIGHTS	Accuracy class M1 & coarser	Using Standard weights of E2 Class & Precision Balance (Range: upto 20 kg, Readability: 0.0001 kg) by substitution method (ABBA" weighing cycle) as per OIML R-111	20 kg	300 mg
296	MECHANICAL- WEIGHTS	Accuracy class M1 & coarser	Using Standard weights of E2 Class & Precision Balances by Comparison method as per OIML R-111, "ABBA" weighing cycle Balance Used: Cap: 5000 g, d=0.1 g	5 kg	95 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

60 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
297	MECHANICAL- WEIGHTS	Accuracy class M1 & coarser	Using Standard weights of E2 Class & Precision Balance (Range: upto 50 kg, Readability: 0.001 kg) by substitution method (ABBA" weighing cycle) as per OIML R-111	50 kg	950 mg
298	MECHANICAL- WEIGHTS	Accuracy class M1 & coarser	Using Standard weights of E2 Class & Precision Balance (Range: upto 2000 g, Readability: 0.01 g) by substitution method (ABBA" weighing cycle) as per OIML R-111	500 g	9.5 mg
299	THERMAL- SPECIFIC HEAT & HUMIDITY	Environment Chamber/Humidity Chamber/Humidity Generator (multi position)	Using Humidity Sensors/Temperatur e sensor with Multi Channel data logger (Minimum 9 Sensor) by comparison method	15 %rh to 95 %rh @ 25 °C	2 %rh
300	THERMAL- SPECIFIC HEAT & HUMIDITY	Humidity indicator with sensor of chamber Single point calibration Method	Using Temperature/Humidi ty Indicator with sensor by comparison method	15 %rh to 95 %rh @ 25 °C	1.69 %rh

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

61 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
301	THERMAL- SPECIFIC HEAT & HUMIDITY	Hygrometer, Humidity indicator with inbuilt or external sensor	Using Humidity Indicator with Sensor & Humidity Generator/chamber by Comparison Method	10 %rh to 95 %rh @ 25 °C	0.6 %rh
302	THERMAL- SPECIFIC HEAT & HUMIDITY	Hygrometer/Humidit y Meter/Digital Thermo- hygrometer/Data Logger	Using Precision standard hygrometer/Temper ature Sensor with indicator, Temperature/Humidi ty Generator by comparison method	10 °C to 50 °C @ 50 %rh	0.5 °C
303	THERMAL- SPECIFIC HEAT & HUMIDITY	Hygrothermometer, Humidity indicator with inbuilt or external sensor	Using Temperature & Humidity sensors with indicator, Humidity Chamber by Comparison Method	15 %rh to 95 %rh @ 20 °C to 40 °C	0.90 %rh
304	THERMAL- TEMPERATURE	SPRTs/ PRTs/Thermocouples at fixed point of Triple point of Water	Using TPW Cell with Maintenance Apparatus, Resistance Bridge By Fixed Point Calibration as per ITS-1990	0.01 °C	0.005 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

62 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
305	THERMAL- TEMPERATURE	Controller with sensor of Black body Source/ IR Thermal Source/ Black body Cavity (Single Position)	Using IR Pyrometers (Emissivity 0.95) by Comparison method	(-) 15 °C to 500 °C	1.81 °C
306	THERMAL- TEMPERATURE	IR Thermometer / IR Gun/ Radiation Pyrometer / Thermal Imager	Using IR-Calibrator/ Standard Pyrometer (Emissivity:0.95) By Comparison Method	120 °C to 500 °C	1.71 °C
307	THERMAL- TEMPERATURE	IR Thermometer / IR Gun/ Radiation Pyrometer / Thermal Imager (temperature only)	Using IR-Calibrator/ Standard Pyrometer (Emissivity:0.95) by Comparison Method	(-) 15 °C to 120 °C	1.41 °C
308	THERMAL- TEMPERATURE	Liquid in glass thermometer, Temperature Gauge	Using SPRT with Temperature Readout & Liquid bath, DMM by comparison method	(-) 65 °C to 40 °C	0.06 °C
309	THERMAL- TEMPERATURE	Liquid in Glass Thermometer, Temperature Gauge	Using PRT with Temperature Readout & silicon oil baths, DMM by comparison mathod	40 °C to 288 °C	0.06 °C
310	THERMAL- TEMPERATURE	Oven, Bath, Freezer, Test Chamber, Furnace (Multiposition)	Using 9 PRT Sensors (Minimum 9) & Temperature Scanner by comparison method	(-) 65 °C to 150 °C	1.58 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

63 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
311	THERMAL- TEMPERATURE	RTD Sensor / Thermocouple with or without temperature indicator, temperature gauge, temperature transmitter	Using SPRT with Temperature Readout & Fluidized baths, DMM by Comparison Method	288 °C to 660 °C	0.06 °C
312	THERMAL- TEMPERATURE	RTD Sensor /Thermocouple with or without temperature indicator	Using SPRT with Temperature Readout & Ultra cool Bath, DMM by comparison method	(-) 95 °C to 140 °C	0.06 °C
313	THERMAL- TEMPERATURE	RTD Sensor /Thermocouple with or without temperature indicator, temperature transmitter	Using SPRT with Temperature Readout & Methanol Oil baths, DMM by comparison method	(-) 65 °C to 40 °C	0.03 °C
314	THERMAL- TEMPERATURE	RTD Sensor /Thermocouple with or without temperature indicator, temperature transmitter	Using SPRT with Temperature Readout & Silicon oil baths, DMM by comparison method	40 °C to 288 °C	0.03 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

64 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
315	THERMAL- TEMPERATURE	SPRTs/ PRTs/ Thermocouples at Boiling Point of LN2	Using Liquid Nitrogen Comparator, SPRT with Resistance Bridge at Boiling Point of Liquid Nitrogen by Comparison Method	(-) 196 °C	0.015 °C
316	THERMAL- TEMPERATURE	SPRTs/ PRTs/ Thermocouples at fixed point of Aluminum Freeze point	Using Aluminum Cell with Maintenance Apparatus, Resistance Bridge by Fixed Point Calibration as per ITS-1990	660.323 °C	0.01 °C
317	THERMAL- TEMPERATURE	SPRTs/ PRTs/ Thermocouples at fixed point of Tin freeze point	Using Tin Cell with Maintenance Apparatus, Resistance Bridge by Fixed Point Calibration as per ITS-1990	231.928 °C	0.006 °C
318	THERMAL- TEMPERATURE	SPRTs/ PRTs/ Thermocouples at fixed point of Triple point of Mercury	Using Mercury Cell with Maintenance Apparatus, Resistance Bridge by Fixed Point Calibration as per ITS-1990	(-) 38.8344 °C	0.006 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

65 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
319	THERMAL- TEMPERATURE	SPRTs/ PRTs/ Thermocouples at Fixed point of Zinc freeze point	Using Zinc Cell with Maintenance Apparatus, Resistance Bridge by Fixed Point Calibration as per ITS-1990	419.527 °C	0.0065 °C
320	THERMAL- TEMPERATURE	Temperature indicator with sensor of Bath/ Dry block calibrator/ Furnace (Single position)	Using PRT Sensor & Temperature Scanner by comparison method	(-) 65 °C to 660 °C	0.09 °C
321	THERMAL- TEMPERATURE	Temperature indicator with sensor of Bath/ Dry block calibrator/ Furnace (Single position)	Using PRT Sensor & Temperature Scanner by comparison method	(-) 95 °C to 140 °C	0.06 °C
322	THERMAL- TEMPERATURE	Temperature indicator with sensor of Bath/ Dry block calibrator/ Furnace (Single Position)	Using R Type Thermocouple Sensor & Temperature Scanner by comparison method	660 °C to 1300 °C	1.59 °C
323	THERMAL- TEMPERATURE	Temperature indicator with sensor of Bath/ Dry block/ Furnace (Single position)	Using Standard R type Thermocouple with Temperature scanner by comparison method	660 °C to 1200 °C	1.76 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

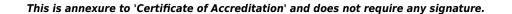
ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423


Page No

66 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
324	THERMAL- TEMPERATURE	Thermcouple sensor with or without temperature indicator, temperature transmitter	Using Standard 'R' type Thermocouple with Temperature readout and Furnace, DMM by comparison method	660 °C to 1300 °C	1.45 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

67 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
		2.0	Site Facility		-
1	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Apparent Power @ 40 Hz to 70 Hz (30 V to 320 V, 1 mA To 10 mA)	Using High Precision 3Phase Reference Standard, Source by Direct/Comparison Method.	0.003 VA to 9.6 VA	0.385 % to 0.009 %
2	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Active Power @ 40 Hz to 70 Hz (30 V to 320 V, 1 mA to 10 mA , PF:0.1 (lead/lag) to UPF)	Using High Precision 3Phase Reference Standard, Source by Direct/Comparison Method.	0.003 W to 9.6 W	0.385 % to 0.009 %
3	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Apparent Energy @ 40 Hz to 70 Hz (30 V to 320 V, 1 mA To 10 mA)	Using High Precision 3Phase Reference Standard by Direct/Comparison Method.	0.003 VAh to 9.6 VAh	0.385 % to 0.009 %
4	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Apparent Energy @ 40 Hz to 70 Hz {30 V to 320 V, 10 mA to 100 A , PF:0.1 to UPF (lead/lag)}	Using High Precision 3Phase Reference Standard by Direct/Comparison Method.	0.03 VAh to 96 kVAh	0.17 % to 0.006 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

68 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
5	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Reactive Energy @ 40 Hz to 70 Hz {30 V to 320 V, 10 mA To 100 A , PF:0.1 to UPF ((lead/lag) }	Using High Precision 3Phase Reference Standard, Source by Direct/Comparison Method.	0.03 VArh to 96 kVArh	0.17 % to 0.006 %
6	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Reactive Power @ 40 Hz to 70 Hz { 30 V to 320 V, 10 mA To 100 A , PF:0.1 (lead/lag) to UPF }	Using High Precision 3Phase Reference Standard , Source by Direct/Comparison Method.	0.03 VAr to 96 kVAr	0.019 % to 0.008 %
7	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Apparent Power @ 40 Hz to 70 Hz (10 V to 480 V, 10 mA to 100 A)	Using Reference Power/ Energy Comparator, source by Direct / Comparison Method.	0.01 W to 1.44 kW	0.018 % to 0.019 %
8	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W AC Reactive power @ 40 Hz to 70 Hz, (30 V to 320 V, 1 mA to 10 mA)	Using High Precision 3 Phase Reference Standard, Source by Direct/Comparison Method.	0.003 VAr to 9.6 VAr	0.385 % to 0.009 %
9	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Active Power @ 40 Hz to 70 Hz {40 V to 320 V, >120 A to 3000 A, PF: 0.5 (Lag/ Lead) to UPF}	By Using 3 Phase Reference Source with Multiturn Current Coil & 3 Phase Power analyzer By Using Direct Method.	2400 W to 2880 kW	0.015 % to 0.473 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

69 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
10	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Apparent Power @ 40 Hz to 70 Hz(30 V to 320 V, 120 A to 3000 A)	Using 3 Phase Reference Standard with Multi turn Current Coil & 3 Phase Power analyzer by Direct Method	360 VA to 2880 kVA	0.015 % to 0.385 %
11	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Phase AC Active Energy @ 40 Hz to 70 Hz (30 V to 320 V, 10 mA to 100 A , PF: 0.1 (lead/lag) to UPF)	Using High Precision 3Phase Reference Standard, Source by Direct/Comparison Method.	0.03 Wh to 96 kWh	0.018 % to 0.0018 %
12	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Phase AC Active Power @ 40 Hz to 70 Hz {30 V to 320 V, 10 mA to 100 A , PF:0.1 (lead/lag) to UPF}	Using High Precision 3 Phase Reference Standard, Source by Direct/Comparison Method.	0.03 W to 96 kW	0.019 % to 0.008 %
13	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	1P2W/ 3P3W / 3P4W Phase AC Reactive Energy @ 40 Hz to 70 Hz (30 V to 320 V, 1 mA To 10 mA)	Using Reference Power/ Energy Comparator, Source by Direct / Comparison Method.	0.003 VArh to 9.6 VArh	0.385 % to 0.009 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

70 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
14	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 1 kHz to 5 kHz	Using Power Analyzer By Direct Method	1 A to 20 A	0.075 % to 0.058 %
15	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 1 kHz to 5 kHz	Using 8½ Digital Multimeter By Direct Method	100 μA to 100 mA	0.035 % to 0.035 %
16	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 1 kHz to 5 kHz	Using 8½ Self Cal DMM by Direct Method	30 μA to 100 μA	0.071 % to 0.049 %
17	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 40 Hz to 70 Hz	Using Reference Power/ Energy Comparator , Source by Direct / Comparison Method	1 mA to 120 A	0.038 % to 0.0013 %
18	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Current @ 40 Hz to 70 Hz	Using High Precision Source and 1&3 Phase Reference Standard by Comparison Method	10 mA to 100 A	0.015 % to 0.0015 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

71 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
19	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using Power Analyzer By Direct Method	1 A to 20 A	0.09 % to 0.25% %
20	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	1 A to 3 A	0.20 % to 0.23 %
21	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	100 μA to 100 mA	0.051 % to 0.056 %
22	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 8½ Self Cal DMM By Direct Method	100 mA to 1 A	0.035 % to 0.075 %
23	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	100 mA to 1 A	0.21 % to 0.21 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

72 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
24	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC CURRENT @ 50 Hz to 1 kHz	Using 8½ Self Cal DMM By Direct Method	30 μA to 100 μA	0.068 % to 0.053 %
25	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC High Voltage @ 50 Hz	Using H.V. Probe with DMM By Direct Method	1 kV to 10 kV	3.06 % to 3.09 %
26	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC High Voltage @ 50 Hz	Using H.V.Probe with DMM by Direct Method	10 kV to 20 kV	3.07 %
27	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC RESISTANCE@ 1 kHz	Using Precision LCR meter, By Direct Method	1 ohm to 10 kohm	0.13 % to 0.11 %
28	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 40 Hz to 70 Hz	Using High Precision 3 Phase Reference Standard, Source by Direct/Comparison Method	10 V to 480 V	0.0013 % to 0.0006 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

73 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
29	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC Voltage @ 40 Hz to 70 Hz	Using Power /Energy Comparator, source by Direct/indirect Method	30 V to 320 V	0.0006 % to 0.0014 %
30	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 6½ DMM, By Direct Method	1 mV to 1 V	0.42 % to 0.12 %
31	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 8½ Self-cal DMM, By Direct Method	1 mV to 100 mV	0.28 % to 0.011 %
32	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 6½ DMM, By Direct Method	1 V to 10 V	0.12 %
33	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	10 V to 100 V	0.12 % to 0.043 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

74 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
34	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 8½ Self-cal DMM, By Direct Method	100 mV to 100 V	0.011 % to 0.014 %
35	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 8½ Selfcal DMM, By Direct Method	100 V to 1000 V	0.012 % to 0.01 %
36	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	AC VOLTAGE @ 50 Hz to 1 kHz	Using 6½ DMM By Direct Method	100 V to 750 V	0.047 % to 0.06 %
37	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Active Energy (1 Phase & 3 Phase) @ 40 Hz to 70 Hz {40 V to 320 V, 120 A to 3000 A, PF: 0.5 to UPF (Lag/ Lead)}	Using 3 Phase Reference Standard with Multiturn Current Coil & 3 Phase Power analyser by Direct Method	2400 Wh to 2880 kWh	0.015 % to 0.380 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

75 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
38	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Active Energy (1Phase & 3Phase) @ 40 Hz to 70 Hz {30 V to 320 V , 1 mA to 10 mA, PF: 0.1 to UPF (Lag/ Lead)}	Using Reference Source & Power/ Energy Comparator, Source by Direct / Comparison Method	0.003 W to 9.6 W	0.385 % to 0.0018 %
39	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Apparent Energy (1 Phase & 3 Phase) @ 40 Hz to 70 Hz.(40 V to 320 V, 120 A to 3000 A)	Using 3 Phase Reference Standard with Multiturn Current Coil & 3 Phase Power analyzer By Direct Method.	2400 VAh to 2880 kVAh	0.015 % to 0.380 %
40	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	CAPACITANCE @ 1 kHz	Using Precision LCR meter, By Direct Method	1 nF to 1 mF	0.41 % to 0.70 %
41	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	HARMONICS TOTAL HARMONICS DISTORTION, DISTORTION FACTOR @ 0.05 mA to 24 A, 40 Hz to 70 Hz.	Using High Precesion Reference Power/ Energy Comparator, Source by Direct / Comparison Method	2 nd order to 40 th order	0.8 % to 0.8 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

76 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
42	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	HARMONICS TOTAL HARMONICS DISTORTION, DISTORTION FACTOR @ 10 V to 240 V, 40 Hz to 70 Hz, 0.5-UPF-0.8	Using Reference Power/ Energy Comparator, source by Direct / Comparison Method	2 nd Order to 40 th Order	0.47 %
43	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	INDUCTANCE @1 kHz	Using Precision LCR meter, By Direct Method	100 μH to 10 H	0.27 % to 0.11 %
44	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Power Factor @ 40 Hz to 70 Hz { 10 V to 480 V, 1 mA to 120 A}	Using High Precision Source & 1&3 Phase Reference Standard by Direct/Comparative Method	0.1 PF to 1 PF	0.007 PF to 0.006 PF
45	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Reactive Energy (1Phase & 3Phase) @ 40Hz - 70Hz.{ 40 V to 320 V, 120 A to 3000 A, PF: 0.5 (Lag/ Lead) to UPF}	Using 3 Phase Reference Standard with Multiturn Currnet Coil & 3 Phase Power analyzer by Direct Method.	2400 VArh to 2880 kVArh	0.015 % to 0.473 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

77 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
46	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Measure)	Reactive Power (1Phase & 3Phase) @ 40 Hz to 70 Hz {40 V to 320 V, 120 A to 3000 A, PF: 0.5 (Lag/ Lead) to UPF}	Using 3 Phase Reference Standard with Multiturn Currnet Coil & 3 Phase Power analyzer by Using Direct Method.	2400 VAr to 2880 kVAr	0.015 % to 0.380 %
47	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz	Using Multi-function Calibrator with Current coil By Direct Method	20 A to 1000 A	1.6 % to 1 %
48	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	1 A to 20 A	0.39 % to 0.14 %
49	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	1 mA to 10 mA	0.14 % to 0.08 %
50	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	10 mA to 100 mA	0.08 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

78 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
51	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	30 μA to 1 mA	0.62 % to 0.14 %
52	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC CURRENT @50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	100 mA to 1 A	0.08 %
53	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power - Single Phase @ 50 Hz (0.2 PF,120 V to 240 V, 0.1 A to 20 A, 0.2 PF)	Using Multi-function Calibrator, By Direct Method	2.4 W to 960 W	0.5 %
54	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power - Single Phase @ 50 Hz (0.5 PF, 120 V to 240 V, 0.1 A to 20 A)	Using Multi-function Calibrator by Direct Method	6 W to 2.4 kW	0.3 %
55	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power - Single Phase @ 50 Hz (UPF, 120 V to 240 V, 0.1 A to 20 A)	Using Multi-function Calibrator By Direct Method	12 W to 4.8 kW	0.10 % to 0.12 %
56	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Power- Single Phase @ 50 Hz (0.8 PF, 120 V to 240 V, 0.1 A to 20 A)	Using Multi-function Calibrator, By Direct Method	9.6 W to 3.8 kW	0.20 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

79 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
57	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Resistance @ 1 kHz	Using Standard Resistors by Direct Method	1 kohm	0.0066 %
58	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC RESISTANCE @ 1 kHz	Using Standard Resistors By Direct Method	1 ohm	0.011 %
59	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC RESISTANCE @ 1 kHz	Using Standard Resistors By Direct Method	10 kohm	0.007 %
60	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC RESISTANCE @ 1 kHz	Using Standard Resistors By Direct Method	10 ohm	0.0065 %
61	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC Resistance @ 1 kHz	Using Standard Resistors By Direct Method	100 ohm	0.0066 %
62	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 1 kHz to 100 kHz	Using Multi-function Calibrator By Direct Method	10 V to 300 V	0.10 V to 0.15 V

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

80 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
63	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	1 mV to 10 mV	0.71 % to 0.088 %
64	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator, By Direct Method	10 mV to 100 mV	0.088 % to 0.038 %
65	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator, By Direct Method	10 V to 100 V	0.029 % to 0.031 %
66	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator, By Direct Method	100 mV to 10 V	0.038 % to 0.029 %
67	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	AC VOLTAGE @ 50 Hz to 1 kHz	Using Multi-function Calibrator By Direct Method	100 V to 1000 V	0.031 % to 0.038 %
68	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	1 μF	0.05 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

81 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
69	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor (Discrete Value) by Direct Method	1 nF	0.02 %
70	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using High Accuracy Decade Capacitance Subsititutor 1 pF to 1uFby Direct Method	1 nF to 1 μF	0.52 %
71	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	10 μF	0.07 %
72	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor (Discrete Value) by Direct Method	10 nF	0.02 %
73	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	100 μF	0.27 %
74	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	100 nF	0.02 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

82 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
75	ELECTRO- TECHNICAL- Alternating Current (< 1 GHz) (Source)	CAPACITANCE @ 1 kHz	Using Standard Capacitor Series (Discrete Value) by Direct Method	1000 μF	0.72 %
76	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 6½ DMM By Direct Method	1 A to 3 A	0.12 % to 0.16 %
77	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 6½ DMM By Direct Method	1 mA to 10 mA	0.50 % to 0.07 %
78	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 8½ DMM By Direct Method	1 mA to 100 mA	0.01 % to 0.012 %
79	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 6½ DMM By Direct Method	10 mA to 100 mA	0.06 % to 0.12 %
80	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 8½ DMM By Direct Method	100 μA to 1 mA	0.01 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

83 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
81	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 8½ DMM By Direct Method	100 mA to 1 A	0.012 % to 0.020 %
82	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC CURRENT	Using 6½ DMM By Direct Method	100 mA to 1 A	0.12 %
83	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using High Resistance Meter By Direct Method	1 Gohm to 10 Gohm	0.48 % to 1.1 %
84	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 6½ DMM By Direct Method	1 kohm to 10 kohm	0.014 %
85	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 6½ DMM By Direct Method	1 Mohm to 10 Mohm	0.022 % to 0.075 %
86	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	1 Mohm to 10 Mohm	0.126 % to 0.015 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

84 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
87	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 6½ DMM By Direct Method	1 ohm to 100 ohm	1.27 % to 0.023 %
88	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using High Resistance Meter By Direct Method	10 Gohm to 1 Tohm	1.1 % to 4.28 %
89	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	10 kohm to 1 Mohm	0.0017 % to 0.126 %
90	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	10 kohm to 100 kohm	0.011 %
91	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	10 Mohm to 100 Mohm	0.015 % to 0.10 %
92	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	10 Mohm to 100 Mohm	0.075 % to 0.18 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

85 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
93	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	100 kohm to 1 Mohm	0.012 % to 0.126 %
94	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	100 Mohm to 1000 Mohm	0.10 % to 0.25 %
95	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	100 ohm to 1 kohm	0.020 % to 0.011 %
96	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC RESISTANCE	Using 8½ DMM By Direct Method	100 ohm to 10 kohm	0.0017 %
97	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 8½ DMM By Direct Method	1 mV to 100 mV	0.032 % to 0.031 %
98	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	1 mV to 100 mV	1.25 % to 0.02 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

86 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
99	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	1 V to 10 V	0.006 % to 0.005 %
100	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 8½ DMM, By Direct Method	10 V to 100 V	0.001 % to 0.0012 %
101	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	10 V to 100 V	0.005 % to 0.006 %
102	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	100 mV to 1 V	0.02 % to 0.006 %
103	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 8½ DMM By Direct Method	100 mV to 10 V	0.001 %
104	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 8½ DMM By Direct Method	100 V to 1000 V	0.0012 % to 0.0013 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

87 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
105	ELECTRO- TECHNICAL- DIRECT CURRENT (Measure)	DC VOLTAGE	Using 6½ DMM By Direct Method	100 V to 1000 V	0.006 %
106	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	1 μA to 10 μA	2.33 % to 0.25 %
107	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	1 A to 10 A	0.076 %
108	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	1 mA to 100 mA	0.018 % to 0.015 %
109	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	10 μA to 100 μA	0.25 % to 0.041 %
110	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	10 A to 20 A	0.12 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

88 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
111	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	100 μA to 1 mA	0.041 % to 0.018 %
112	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC CURRENT	Using Multi-function Calibrator By Direct Method	100 mA to 1 A	0.015 % to 0.076 %
113	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	0.01 ohm	0.084 %
114	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	0.01 ohm to 100 kohm	1 % to 0.012 %
115	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistor By Direct Method	0.1 ohm	0.035 %
116	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	0.1 ohm to 10 ohm	2.32 % to 0.045 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

89 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
117	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	1 Gohm	1.64 %
118	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	1 kohm	0.0007 %
119	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	1 kohm to 10 kohm	0.012 % to 0.013 %
120	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	1 kohm to 100 kohm	0.005 % to 0.008 %
121	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	1 Mohm to 10 Mohm	0.0044 % to 0.016 %
122	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistor By Direct Method	1 ohm	0.0007 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

90 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
123	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	1 ohm	0.055 %
124	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	1 ohm to 100 ohm	0.15 % to 0.005 %
125	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	1 Tohm	5.39 %
126	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	10 Gohm	1.64 %
127	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	10 kohm	0.005 %
128	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	10 kohm to 100 kohm	0.013 % to 0.012 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

91 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
129	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	10 Mohm to 100 Mohm	0.016 % to 0.07 %
130	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistor By Direct Method	10 ohm	0.0007 %
131	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	10 ohm to 100 ohm	0.045 % to 0.014 %
132	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	100 Gohm	3.47 %
133	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	100 kohm to 1 Mohm	0.008 % to 0.0044 %
134	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	100 kohm to 1 Mohm	0.013 % to 0.058 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

92 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
135	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	100 Mohm	1.17 %
136	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	100 Mohm to 1000 Mohm	0.07 % to 1.74 %
137	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Standard Resistors By Direct Method	100 ohm	0.0009 %
138	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Multi-function Calibrator By Direct Method	100 ohm to 1 kohm	0.005 %
139	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC RESISTANCE	Using Decade Resistance Box By Direct Method	100 ohm to 1 kohm	0.014 % to 0.012 %
140	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC Resistance	Using Standard Resistor By Direct Method	25 ohm	0.0007 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

93 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
141	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	1 mV to 10 mV	0.17 % to 0.028 %
142	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	1 V to 10 V	0.0017 % to 0.0018 %
143	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	10 mV to 100 mV	0.028 % to 0.0043 %
144	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Nano Scan Volt Maintenance System by Direct Method	10 V	0.000367 %
145	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	10 V to 100 V	0.0018 % to 0.0036 %
146	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator By Direct Method	100 mV to 1 V	0.0043 % to 0.0017 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

94 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
147	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	DC VOLTAGE	Using Multi-function Calibrator, By Direct Method	100 V to 1000 V	0.0025 %
148	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	1H	0.041 %
149	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	1 mH	0.12 %
150	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	10 H	1.14 %
151	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	10 mH	0.037 %
152	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1 kHz	Using Standard Inductor by Direct Method	100 mH	0.036 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

95 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
153	ELECTRO- TECHNICAL- DIRECT CURRENT (Source)	INDUCTANCE @ 1kHz	Using Standard Inductor, by Direct Method	100 μΗ	0.31 %
154	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope - Bandwidth	Using Multi-function Calibrator By Direct Method	50 kHz to 1100 MHz	4.63 %
155	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope Amplitude/ Voltage (DC Signal)	Using Multi-function Calibrator by Direct Method	1.25 mV to 100 V (1 Mohm)	0.5 % to 0.06 %
156	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope Amplitude/ Voltage (Square Wave Signal)	Using Multi-function Calibrator by Direct Method	1 mV to 100 V	0.29 % to 0.10 %
157	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope Amplitude/ Voltage(Square Wave Signal) (50 ohm)	Using Multi-function Calibrator by Direct Method	1 mV to 6.6 V	0.29 %
158	ELECTRO- TECHNICAL- ELECTRICAL EQUIPMENT (Source)	Oscilloscope: Time Base	Using Multi-function Calibrator, By Direct Method	2 ns to 5 s	0.025 % to 0.50 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

96 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
159	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	B-Type Thermocouple	Using Multi-function calibrator By Direct method	600 °C to 1800 °C	1.8 °C
160	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	E-Type Thermocouple	Using Multi-function calibrator By Direct method	(-) 250 °C to 1000 °C	1.3 °C
161	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	J-Type thernocouple	Using Multi-function calibrator By Direct method	(-) 210 °C to 1200 °C	0.6 °C
162	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	K-Type Thermocouple	Using Multi-function Calibrator By Direct Method	(-) 200 °C to 1370 °C	1.3 °C
163	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	N-Type Thermocouple	Using Multi-function calibrator By Direct method	(-) 200 °C to 1300 °C	1.8 °C
164	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	R-Type Thermocouple	Using Multi-function calibrator By Direct method	100 °C to 1760 °C	1.3 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

97 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
165	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	RTD (PT 385 / PT 100)	Using 8½ DMM, By Direct Method	(-) 200 °C to 800 °C	0.4 °C
166	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	S-Type Thermocouple	Using Multi - function Calibrator By Direct Method	100 °C to 1750 °C	1.3 °C
167	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Measure)	T-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	(-) 200 °C to 400 °C	1.9 °C
168	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	B-Type Thermocouple	Using Multi-function Calibrator by Direct Method	600 °C to 1800 °C	0.8 °C
169	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	E-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	(-) 250 °C to 1000 °C	0.6 °C
170	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	J-Type Thermocouple	Using Multi-function Calibrator By Direct Method	(-) 200 °C to 1200 °C	0.4 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

98 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
171	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	K-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	(-) 200 °C to 1350 °C	0.5 °C
172	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	N-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	(-) 200 °C to 1300 °C	0.6 °C
173	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	R-Type Thermocouple	Using Multi-function Calibrator by Direct Method	100 °C to 1767 °C	0.8 °C
174	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	RTD (PT 385 / PT 100)	Using Multi-function Calibrator By Direct Method	(-) 200 °C to 800 °C	0.2 °C
175	ELECTRO- TECHNICAL- TEMPERATURE SIMULATION (Source)	S-Type Thermocouple	Using Multi-function Calibrator, By Direct Method	100 °C to 1760 °C	0.7 °C
176	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using Multi-function Calibrator by Direct Method	1 Hz to 2 MHz	0.0013 %

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

99 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
177	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Frequency	Using Rubidium Frequency Standard By Direct Method	1 MHz	0.000001 %
178	ELECTRO- TECHNICAL- 78 TIME & F FREQUENCY (Measure)	Frequency	Using High Precision Source & 1&3 Phase Reference Standard COM by Comparison Method	40 Hz to 70 Hz	0.006 Hz
179	ELECTRO- TECHNICAL- TIME & FREQUENCY (Measure)	Time	Using High Resolution counter By comparison Method	5 s to 24 hr	0.02 s to 0.25 s
180	ELECTRO- TECHNICAL- TIME & FREQUENCY (Source)	Frequency	Using Function Generator by Direct Method	1 Hz to 15 MHz	0.0013 % to 0.0023 %
181	MECHANICAL- PRESSURE INDICATING DEVICES	PRESSURE (HYDRAULIC) Pressure Gauge, Pressure Transmitter with display, Pressure Recorder, Pressure Calibrator	Using Digital Pressure Calibrator by Comparison method as per DKD- R 6-1:2016	34.47 bar (g) to 344.7 bar (g)	0.35 bar

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

100 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
182	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance Calibration of Class-I weighing balances and coarser (Readability: 0.1 mg)	Using Standard weights of E2 Class as per OIML R-76	>50 g to 200 g	0.3 mg
183	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance, Class III weighing balances and coarser (readability: 100 g)	Using Standard weights of M1 Class as per OIML R-76	>500 kg to 1000 kg	300 g
184	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance, Class-II weighing balances and coarser, readability: 10 mg	Using Standard weights of E2 Class as per OIML R-76	>200 g to 2 kg	30 mg
185	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance- Class IIII weighing balances (readability: 10 g)	Using Standard weights of M1 Class as per OIML R-76	>50 kg to 200 kg	30 g
186	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance- Class IIII weighing balances, readability: 250 g	Using Standard weights of M1 Class as per OIML R-76	>2000 kg to 2500 kg	750 g
187	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance- Class-I weighing balances and coarser, readability: 0.01 mg	Using Standard weights of E2 Class as per OIML R-76	1 mg to 50 g	0.06 mg

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

101 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
188	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance-Class IIII weighing balances, readability: 50 g	Using Standard weights of M1 Class as per OIML R-76	>200 kg to 500 kg	150 g
189	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance-Class IIII weighing balances,readability: 200 g	Using Standard weights of M1 Class as per OIML R-76	>1000 kg to 2000 kg	600 g
190	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance-Class-III weighing balances and coarser readability: 1 g	Using Standard weights of E2 Class as per OIML R-76	>20 kg to 50 kg	3 g
191	MECHANICAL- WEIGHING SCALE AND BALANCE	Electronic weighing balance-Class-III weighing balances and coarser, readability: 100 mg	Using Standard weights of E2 Class as per OIML R-76	>2 kg to 20 kg	300 mg
192	THERMAL- SPECIFIC HEAT & HUMIDITY	Environment Chamber/Humidity Chamber/Humidity Generator (multi position)	Using Humidity Sensors/Temperatur e sensor with Multi Channel data logger (Minimum 9 Sensor) by comparison method	15 %rh to 95 %rh @ 25 °C	2 %rh

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

102 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
193	THERMAL- SPECIFIC HEAT & HUMIDITY	Humidity indicator with sensor of chamber Single point calibration Method	Using Temperature/Humidi ty Indicator with sensor by comparison method	15 %rh to 95 %rh @ 25 °C	1.69 %rh
194	THERMAL- SPECIFIC HEAT & HUMIDITY	Hygrometer, Humidity indicator with inbuilt or external sensor	Using Humidity Indicator with Sensor & Humidity Generator/chamber by Comparison Method	10 %rh to 95 %rh @ 25 °C	0.6 %rh
195	THERMAL- SPECIFIC HEAT & HUMIDITY	Hygrometer/Humidit y Meter/Digital Thermo- hygrometer/Data Logger	Using Precision standard hygrometer/Temper ature Sensor with indicator, Temperature/Humidi ty Generator by comparison method	10 °C to 50 °C @ 50 %rh	0.5 °C
196	THERMAL- SPECIFIC HEAT & HUMIDITY	Hygrothermometer, Humidity indicator with inbuilt or external sensor	Using Temperature & Humidity sensors with indicator, Humidity Chamber by Comparison Method	15 %rh to 95 %rh @ 20 °C to 40 °C	0.90 %rh
197	THERMAL- TEMPERATURE	IR Thermometer / IR Gun/ Radiation Pyrometer / Thermal Imager	Using IR-Calibrator/ Standard Pyrometer (Emissivity:0.95) By Comparison Method	120 °C to 500 °C	1.71 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

103 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
198	THERMAL- TEMPERATURE	IR Thermometer / IR Gun/ Radiation Pyrometer / Thermal Imager (temperature only)	Using IR-Calibrator/ Standard Pyrometer (Emissivity:0.95) by Comparison Method	(-) 15 °C to 120 °C	1.41 °C
199	THERMAL- TEMPERATURE	Oven, Bath, Freezer, Test Chamber, Furnace (Multiposition)	Using 9 PRT Sensors (Minimum 9) & Temperature Scanner by comparison method	(-) 65 °C to 150 °C	1.58 °C
200	THERMAL- TEMPERATURE	RTD Sensor / Thermocouple with or without temperature indicator, temperature gauge, temperature transmitter	Using PRT Sensor with Temperature scanner & Metrology well, DMM by comparison method	(-) 45 °C to 140 °C	0.12 °C
201	THERMAL- TEMPERATURE	RTD Sensor /Thermocouple with or without temperature indicator	Using SPRT with Temperature Readout & Ultra cool Bath, DMM by comparison method	(-) 95 °C to 140 °C	0.06 °C
202	THERMAL- TEMPERATURE	RTD sensor /Thermocouple with or without temperature indicator (Boiling Point of LN2)	Using Liquid Nitrogen Comparator, PRT with Temperature Scanner at Boiling Point of Liquid Nitrogen by Comparison Method	(-) 196 °C	0.03 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

104 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
203	THERMAL- TEMPERATURE	RTD sensor /Thermocouple with or without temperature indicator, temperature gauge, temperature transmitter	Using PRT Sensor with Temperature scanner and Metrology well, DMM by comparison method	140 °C to 660 °C	0.47 °C
204	THERMAL- TEMPERATURE	Temperature indicator with sensor of Bath/ Dry block calibrator/ Furnace (Single position)	Using PRT Sensor & Temperature Scanner by comparison method	(-) 65 °C to 660 °C	0.09 °C
205	THERMAL- TEMPERATURE	Temperature indicator with sensor of Bath/ Dry block calibrator/ Furnace (Single position)	Using PRT Sensor & Temperature Scanner by comparison method	(-) 95 °C to 140 °C	0.06 °C
206	THERMAL- TEMPERATURE	Temperature indicator with sensor of Bath/ Dry block/ Furnace (Single position)	Using PRT Sensor with Temperature scanner by comparison method	(-) 45 °C to 660 °C	0.47 °C
207	THERMAL- TEMPERATURE	Temperature indicator with sensor of Bath/ Dry block/ Furnace (Single position)	Using Standard R type Thermocouple with Temperature scanner by comparison method	660 °C to 1200 °C	1.76 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

105 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
208	THERMAL- TEMPERATURE	Thermcouple sensor with or without temperature indicator, temperature gauge, temperature transmitter	Using Standard 'R' Type Thermocouple with Temperature scanner & Dry Block Furnace, DMM by comparison method	660 °C to 1200 °C	1.88 °C

SCOPE OF ACCREDITATION

Laboratory Name:

ELECTRONICS AND QUALITY DEVELOPMENT CENTRE (EQDC), B 177/178, GIDC

ELECTRONICS ESTATE, SECTOR 25, GANDHINAGAR, GUJARAT, INDIA

Accreditation Standard

ISO/IEC 17025:2017

Certificate Number

CC-4423

Page No

106 of 106

Validity

28/05/2025 to 27/05/2029

S.No	Discipline / Group	Measurand or Reference Material/Type of instrument or material to be calibrated or measured / Quantity Measured /Instrument	Calibration or Measurement Method or procedure	Measurement range and additional parameters where applicable(Range and Frequency)	* Calibration and Measurement Capability(CMC)(±)
		2.0	Permanent Site Facility		
1	FLUID FLOW- FLOW MEASURING DEVICES	Liquid Volume (Water)	Using 3 Ton Weighing System & Digital Timer Comparison as per ISO 4185:1980	0.2 m ³ to 2.0 m ³	0.6 % rdg
2	FLUID FLOW- FLOW MEASURING DEVICES	Volume Flow Rate (Water)	Using 3 Ton Weighing System & Digital Timer Comparison as per ISO 4185:1980	1.0 m ³ /hr to 200.0 m ³ /hr	0.6 % rdg
3	FLUID FLOW- FLOW MEASURING DEVICES	Volume Flow Rate (Water)	Using Electro- magnetic Flow Meter, Direct Comparison Method	3.0 m ³ /hr to 200.0 m ³ /hr	0.9 % rdg

^{*} CMCs represent expanded uncertainties expressed at approximately the 95% level of confidence, using a coverage factor of k = 2.